
g4dbr

Eric Largy

2020-11-02

Contents

1 General overview 2

1.1 Intended and less-intended uses . 2

1.2 Extended scope . 2

1.3 Main features . 3

1.4 Workflow . 4

2 Installation and setup 4

2.1 Installation . 4

2.2 Setup . 5

3 g4db 5

3.1 Running the app . 5

3.2 Interface overview . 5

3.3 Consulting a database: the database tab . 6

3.4 Importing data in the database: the importR tab . 13

3.5 Automated processing of UV-melting data: the meltR tab . 18

4 Other functions and reference files 29

4.1 epsilon.calculator . 29

4.2 mass.diet . 32

4.3 database.eraser . 36

References 39

Copyright 2020 Eric Largy. Licensed under the GPL-3 license.

1

https://github.com/EricLarG4

1 General overview

1.1 Intended and less-intended uses

g4dbr is an R package containing the Shiny app g4db that is dedicated to the creation, visualization, and reporting
of curated circular dichroism (CD), 1H-NMR, UV-melting and native mass spectrometry (MS) data from oligonu-
cleotides. Although specifically developed for G-quadruplex forming sequences deposited in the PDB, g4dbr can
be used with any nucleic acid sequence.

Users can either employ the app to visualize a database generated by g4db, visualize data pasted into a templated
Excel file (provided in the package), and create/edit/complete a g4db database from data supplied in said template.

The long-term goal is to provide tools for the robust deposition of raw experimental data, and processed data de-
rived from them, while allowing for easy and versatile visualisation and reporting.

Raw data pasted in the supplied Excel template can be deposited, and visualized in several ways, which are open
to other scientists without the need for proprietary so�ware. The approach is two-fold:

1.1.1 Templated .xlsx file deposition as is

Once pasted into the input template, the data can be deposited as is. It can then be explored natively in Excel or
any open-source equivalent. The data is formatted in a non-ambiguous layout, provided it is properly labeled in
the header cells.

The template is also amenable to so�ware allowing header cell import/management, such as Origin, in which im-
port scripts can be used.

Of course, the template can be natively imported in the g4db app. The advantages over Excel/Origin for this particu-
lar application are numerous in terms of both ease and speed of use (e.g. data filtering, automated figure plotting),
and functionalities (e.g. peak labeling, normalization/calculation, selective data export). See the Main features
section for more details.

Any data treatment and filtering performed within g4db is not saved into the input .xlsx file. To save this into a new
or existing database file, the second approach must be used:

1.1.2 Rdata file

g4db allows exporting selected datasets into an RData (.Rda) file where the data is consolidated and all calculation
has already been performed. This leads to faster figure display, smaller file size, and is amenable to host very large
datasets (where Excel is limited in row numbers, which is particularly problematic for mass spectrometry data).

The downside of this approach is that it cannot be handled outside of R. Note, however, that g4db is not required
to open and use the data, it can be natively loaded in base R, which is free and open source. To do so, use the load
function, for instance below for a demo database provided in the package:

load(system.file("extdata/demo_database.Rda", package = 'g4dbr'))

1.2 Extended scope

g4dbr includes a number of functionalities that will be described here within the context of their intended use, but
that can be utilized outside of this scope, i.e.

• automated or semi-automated data filtering, treatment and labeling,

2

• computation of molar extinction coe�icient (λ = 260 nm) of oligonucleotides (epsilon.calculator),
• UV-melting data treatment (meltR),
• MS data size reduction (mass.diet)
• Database selective data deletion (database.eraser)

1.3 Main features

Below is a list of the main features of g4dbr.

• Visualization of CD, UV-melting, 1H-NMR and native MS data gathered in a database (.Rda format)

– Collapsible and tabulated interface
– Quick and user-friendly data filtering in tables and figures (e.g. oligonucleotide, bu�er, cation, x-axis

range,. . .)
* Automated bu�er list collection
* Automated tune and replicate collection

– Control over the database content, display, and reporting (see below)

• Robust database creation and edition

– Data imported from a templated Excel file
– Selective data importing (by e.g. technique/oligo/bu�er/data range)
– Duplicate detection/suppression
– Automated deposition date and DOI link generation for traceability purpose
– Replication management for MS and UV-melting data
– Di�erent tune management for MS data

• Automated data treatment

– Conversion of CD to molar ellipticities
– MS data normalization
– 1H-NMR and MS peak labeling
– UV-melting data normalization and conversion to folded fraction
– UV-melting thermodynamic quantities determination
– UV-melting Tm labeling

• Custom figures

– Control over colors, size, and transparency of figures
– Color palettes adapted to qualitative, sequential, and diverging data
– Switch between overlaid and paneled figures for quick comparisons
– Control over variables mapped in paneled figures
– Automated colour mapping to non-paneled variables
– Automated figure dimension change to accommodate multiple rows

• Automated report generation

– Full or Supporting information dedicated reports
– pdf, HTML and docx formats
– All data, figure captions, figure sizing, file name, etc. generated dynamically without user input

• Open

– Coded in R
– Easy-to-export data tables (practical for standalone data treatment)
– Import template easy to read in other so�ware
– Full code and experimental data hosted openly on GitHub

3

1.4 Workflow

For raw data import, the data must be pasted into a templated Excel file, then read in the importR module of g4db.
In this module, the data can be filtered, processed, and selected for writing into a database file (.Rda). The .Rda file
can be opened in the database module for visualization and reporting purposes. It can also simply be loaded in
base R for further processing or reporting steps that may not be possible in g4db.

Figure S1: Application workflow

2 Installation and setup

2.1 Installation

Install from Github using:

install.packages("devtools")
devtools::install_github('EricLarG4/g4dbr')

Alternatively, download the .zip archive from GitHub then run:

4

https://github.com/EricLarG4/g4dbr

install.packages("devtools")
devtools::install_local("XXX/g4dbr-master.zip")

Where XXX is the file path to the zip archive.

2.2 Setup

Load the package with:

library(g4dbr)

3 g4db

3.1 Running the app

Only one function must be called to use all functionalities from g4dbr:

g4db()

This function opens a Shiny app in either the currently used IDE (e.g. RStudio), or a web browser.
Other functions used in g4db are packaged in g4dbr, and can be used as standalone tools. Refer to the Other func-
tions and reference files section.

3.2 Interface overview

The interface is divided in 3 tabs that can be selected at the top of the screen, and are used to accomplished specific
tasks:

• database, to visualize, report, and remove data from a database file.
• importR, to visualize and process raw data, and export all or part of it to a database file,
• meltR, to visualize and treat UV-melting data, and export all or part of it to the a database (via importR).

The tabs make use of various sidebars, mainly to perform data importing, filtering, processing, exporting and re-
porting.

3.2.1 Figures and tables

In the main area of the interface are the figures and tables, within collapsible and closable boxes, letting the user
select what data to display.
All tables are sortable and filterable to assist in exploring rich data sets, and find specific data points rapidly. The
data is presented in long format, which makes it easier to filter through, and to map variables into figures, because
each variable is contained in its own column. Columns can be selectively hidden, and some of the less relevant
ones are hidden by default.
Data presented in figures and tables reflects the values given to the di�erent filters. On the contrary, filtering the
tables does not alter the figures, it is only a mean of accessing and/or exporting a subset of the data.
All tables can be exported as .csv, .xlsx, or in the clipboard. All columns will be exported, regardless of their visibility
in the app.

5

3.2.2 Sidebars and panels

3.2.2.1 Le� sidebars and panels Each tab has a sidebar on the le�-hand side, which contains a number of
tools for data importing, exporting, filtering, and formatting. This le� sidebar is collapsible to release some space
for figures and tables on smaller screens. Each tab has a specific and independent le� sidebar, and the values from
those le� sidebar modifies the data for all the content of the tab (and almost always only this tab). Drop-down
menus contain select all/deselect all buttons for quick data selection.
Given the amount of menus necessary for the meltR tab, a large portion is hosted in two collapsible and movable
“hovering” panels.
The sidebar from the database and importR tabs, and a panel of meltR also contain a color palette selection menu,
and submenu for certain palettes having variations (Figure S2). The available palettes include:

• The well known Brewer palettes that include qualitative, diverging, and sequential palettes,
• Some discrete palettes from D3.js, a JavaScript library for producing interactive data visualizations (imported

from the ggsci package),
• Several palettes inspired by the colors used by scientific journals/publishers (NPG, AAAS, NEJM, Lancet,

JAMA, JCO, etc.; imported from the ggsci package).

The selected colour palette is applied to all the figures of the tab, but does not a�ect other tabs.

Figure S2: Colour palette selection. Some palette families (1) containing several palette variations (2)

3.2.2.2 Right sidebars Figure boxes feature a right sidebar. They contain filtering and data formatting filters
that are applied only on the corresponding figure (contrary to the le� sidebars that a�ect entire tabs). These side-
bars are collapsible as well, and hidden by default.

3.3 Consulting a database: the database tab

The database tab is dedicated to visualizing, exporting, and reporting on the data of a curated database file.

3.3.1 Database input

The data from a given database must be gathered in a single .Rda file generated in the importR tab. It contains five
dataframes: one dedicated to the general oligonucleotide information (db.info), and the four other ones to each
analytical technique (db.CD, db.NMR, db.MS, db.UV).
g4db extracts automatically all the data, but it can also be loaded in the global environment (i.e. without using
g4db) using load(). For instance, to load the demo database, run:

6

https://a2.typepad.com/6a0105360ba1c6970c01b7c7187af2970b-pi
https://observablehq.com/@d3/working-with-color
https://d3js.org/

load(system.file("extdata/demo_database.Rda", package = 'g4dbr'))

The global environment should now contain five dataframes that can be opened and worked with. When using
g4db(), the data will be loaded in the package environment and will therefore not appear in the global environ-
ment.

3.3.2 Database use

3.3.2.1 Data loading Upon opening the database file, the interface should be devoid of data. The first step is
to import a database file:

1. Click on Browse in the Load section of the le� sidebar (Figure S3),
2. Select a .Rda file that has been prepared in importR

Figure S3: Empty database view

The General information and oligonucleotide selection table should now be populated by a list of the oligonu-
cleotides for which the database file contains at least information data (Figure S4-1).

The content of this table is controlled by a drop-down menu in the le� sidebar, and by the oligonucleotide column
filter (in that order) (Figure S4-2). By default, all oligonucleotides are shown, but none are selected for analytical
result display (to avoid wait times when the table content is changed).

7

Figure S4: Demo database loaded in the database tab: the general oligonucleotide information should be displayed
(1). The visible oligonucleotides can be filtered in the table or from the dropdown menu in the le� sidebar (2). The
table (1), and other tables in g4db, can be exported (a), their column visibility changed (b), and their content sorted,
filtered or searched through (c)

3.3.2.2 Data display To start visualizing data, the oligonucleotide(s) of interest must be selected from the Gen-
eral information table, by clicking on one or several rows (Figure S5-1). Clicking again on a row deselects it.

The CD, NMR and UV-melting data should now be displayed (Figures S5-2 and S6-1). By default, the data acquired
for all bu�er conditions (i.e. all cation + electrolyte) are shown, but it can be restricted to only certain bu�ers, elec-
trolytes or cations, using the menus from the le� sidebar (Figure S5-3). Individual cation and electrolyte selections
supersede the bu�er selection. For instance, if the bu�ers “TMAA + KCl” and “Kp + KCl” are selected, but the “Kp”
electrolyte is excluded, then only “TMAA + KCl” will e�ectively be selected.

Note that the bu�ers, electrolytes and cations are not a static list, but are automatically collected from the CD and
UV-melting data. It is therefore important to keep their naming consistent across the entire database.

8

Figure S5: Database data display: both oligonucleotides have been selected (1). Their data is displayed (2) but was
bu�er-filtered (3): only KCl-containing solutions are selected (a). Using the right sidebar, the CD data was panelled
by oligonucleotide (b)

The UV-melting data is displayed in two separate figures (S6-1): on the le� is shown the raw data with the fit line,
and on the right is processed data. Depending on whether the data was processed by non-linear fitting or not, the
processed data will either be the folded fraction or the absorbance normalized in [0,1]. This allows to plot the data
of highly stable or unstable species on the same figure as those for which the Tm could be determined.

To also display MS data (S6-2), the Plot MS button must be used S6-3. This avoid long refresh times when select-
ing oligonucleotides. Any change in the oligonucleotide, bu�er, tunes, replicates, and m/z selections will only be
e�ective if the figure is replotted.

9

Figure S6: Database data display: UV-melting (1) and native MS (2) display. To display the MS data, the Plot MS
button must be used (3)

For all these analytical methods, all data points are gathered in tables, collapsed by default. These data points can
be sorted, filtered, and exported in .xlsx or .csv files, or copied in the clipboard (Figure S4). Again, filtering data in
the tables does not a�ects the figures, only the le� and right sidebars do.

3.3.3 Data content and customization

3.3.3.1 General information This table gathers all the general information on the deposited oligonucleotides.
By default, the following variables are displayed:

• Oligonucleotide name, preferably a PDB code where available
• DOI, with a hyperlink that is automatically generated upon importing with importR
• Submitted by, the initials or full name of the data submission author
• Deposition date, which is generated automatically by g4db
• Sequence, the 5’ to 3’ oligonucleotide sequence
• Length, the number of nucleotides, generated automatically by g4db
• Average mass andMonoisotopic massof the oligonucleotide, generated automatically by g4db, and used

for the native MS peak labelling
• Extinction coefficient (260 nm), the molar extinction coe�icient of the oligonucleotide (in M-1cm-1),

calculated automatically by g4db (via the epsilon.calculator)
• Topology, a short user-supplied description of the oligonucleotide structure (e.g. parallel quadruplex)

The fields hidden by default (nucleotide and atom numbers) are not of direct interest to the general user, but can
be displayed using the column visibility button.

Importantly, this table is used to select the oligonucleotide for which the analytical data should be displayed, as
shown in Figure S5. It is possible to quickly filter through entries by e.g. topology or length, to select all oligonu-
cleotides falling in a given category.

10

3.3.3.2 Circular dichroism The data is shown as points and lines, colored by bu�er. The oligonucleotides are
di�erentiated by point shape.

The right sidebar contain the following settings:

• normalized switch: choose to display molar ellipticities (as automatically calculated in importR; default) or
raw data (i.e. in mdeg).

• superimposition dropdown menu: choose to display all data superimposed (default), grouped in panels by
oligonucleotide or bu�er, or not superimposed at all.

– The figure size will automatically adjust with the number of panels

• scale dropdown menu: select whether all panels must have the same y-axis scale (not free) or can be rescaled
to better fit their content (free)

• Wavelength slider: select the wavelength range to display (default: 220-330)
• point size and line size sliders: adjust the size of points and lines
• transparency slider: adjust the transparency of both points and lines

The data is gathered in the CD data table below, which can be sorted, filtered, and exported. The fields displayed
by default are Oligonucleotide, Buffer, Wavelength (nm), CD (mdeg), and Delta epsilon (M-1cm-1). The
other fields hidden by default can be displayed using the column visibility button.

3.3.3.3 1H NMR The data is shown as a line, colored by oligonucleotide, and is normalized so that all spectra
will share the same y-axis range. By default, each spectrum is shown in its own panel. Peak numbers are shown
above their peaks and linked by a segment.

The right sidebar contains some settings identical to the CD one (superimposition, scale, line size). In addition, it
contains a chemical shi� (ppm) slider to select the chemical shi� range to display (default: 9.5-12.5 ppm).

The data is gathered in the NMR data table below, which can be sorted, filtered, and exported. The fields displayed
by default are Oligonucleotide, Buffer, Chemical shift (ppm), and Intensity. The other fields hidden by
default can be displayed using the column visibility button.

3.3.3.4 UV-melting UV-melting data is plotted with points, and in the case of the raw data with an additional
fit line.

The right sidebar contains some settings identical to some described above (point size, line size, line transparency).
In addition, it contains a Temperature (K) slider to select the temperature range to display (default: 278-368 K).

The data is gathered in the UV-melting data table below, which can be sorted, filtered, and exported. The fields
displayed by default areOligonucleotide,Buffer,ramp,T (K),Folded fraction, andAbsorbance. The other
fields hidden by default can be displayed using the column visibility button.

3.3.3.5 Native mass spectrometry There are two distinct plots to visualize MS data, i.e. one full scale and one
charge-state focused, to better see the potassium adduct distribution.

In both cases, the data is shown as line, with labels to name the visible species (Figure S7). By default, spectra are
paneled by oligonucleotide (columns) and bu�er (rows), which should typically lead to a single spectrum per panel.
Peak labels appear above their corresponding peak. The focused plot displays the 5- charge state by default, but
this can be changed by the user.

Besided a line size slider, the right sidebar of the full-scale plot contains:

• m/z slider: select the m/z range to display (default: 800-2500 m/z).
• Tunes dropdown menu: select the tunes to display.

11

– tunes are collected automatically from the data

• Replicates dropdown menu: select the replicates to display

– replicates are collected automatically from the data

• Layout dropdown menu: select a panel layout among all combinations of oligonucleotide, tune, bu�er, and
replicate

– Six unique combinations can be selected, and the six other ones are accessed using the transpose grid
switch

– If more than one spectrum appears on a panel, the two variables that are not mapped by the layout are
combined to be mapped as colours

• labels slider: choose whether to show (default) or hide labels

Figure S7: Detail of native MS data panelled with oligonucleotides in columns (a) and tunes in row (b). Because
several spectra are superimposed, the remaining variables (replicate and bu�er) are combined to map colors (c)

The charge-state focused plot sidebar only contains a charge selection menu.

The data is gathered in the native ESI-MS data table above, which can be sorted, filtered, and exported. The
fields displayed by default are Oligonucleotide, Buffer, Tune, Replicate, m/z, Normalized intensity, and
Intensity. The other fields hidden by default can be displayed using the column visibility button.

The table may take some time to load given the large number of data points.

3.3.4 Reporting

3.3.4.1 Report generation Reports can be generated from the displayed data, either full (with traceability fea-
tures, titles,. . .), or SI (with minimal information to avoid redundancy when reports are collated into a supporting
information document), in Word, pdf, and HTML formats, in a few simple steps:

1. Select the oligonucleotide(s) for which the report must be generated,
2. Plot the MS data, if they are to be included in the report. If not, the section will not appear in the report,
3. Customize, where necessary, the figures (e.g. colours, scales),
4. Select the report type (full or SI) with the Report type switch,
5. Select a document format (Word, pdf, HTML), in the le�_sidebar (Report section)
6. Click on the Download button and save the document.

12

3.3.4.2 Word formatting The Word format uses a template file to define its appearance (i.e. the styles). This
template file can be changed by the user to generate reports directly with the desired appearance, to avoid addi-
tional work outside of g4db.

The template is located in the markdown folder of the g4dbr package. To locate the template, run:

system.file("rmarkdown/word-styles-reference.docx", package = "g4dbr")

Then, modify the styles as desired. Local text modifications will not be taken into account.

It is also advised to back up this file in another location, because any new install or update will overwrite it.

3.3.5 Data deletion

It is possible to selectively remove data from the database, by oligonucleotide and analytical method, using the
database.eraser function implemented within g4db.

Several oligonucleotides can be processed at once, if the same analytical methods to remove are selected. If all
analytical methods are selected, the selected oligonucleotide entries will be entirely purged (including the general
information).

In many cases, it is not good practice to ever delete data from a database. If the use of g4db lies within these cases
do not use the data deletion tool as it permanently deletes data. Here, the data deletion tool was mostly provided
as a mean to correct and update data cleanly, as the new data might not be written to the database if a duplicate
record already exists. It is also a way to generate lighter, sub-databases for specific uses, by discarding all irrelevant
entries.

By default, a new file will be generated, named Modified database-YYYY-MM-DD.Rda, where YYYY-MM-DD is the
date of the day, so as to avoid accidental file overwriting.

To delete one or several entries:

1. Select the oligonucleotide(s) to delete from the dropdown menu in the le�_sidebar (not from the general
info table),

2. Select the methods for which the data must be removed, by flipping the switches on,
3. Click on Erase to a db file
4. Save the file (with a di�erent name than the one in use)
5. Optional: load the new database file for verification and further use

For more details on the database.eraser function, refer to the Other functions and reference files section.

3.4 Importing data in the database: the importR tab

3.4.1 Templated-Excel file

Before importing data into a database file using g4db, it is necessary to paste this data into a provided Excel tem-
plate file. Once filled, this file doubles as a data repository that can be explored in other pieces of so�ware. Note,
however, that such files can become quite heavy (in particular with MS data), leading to very slow loading and
saving times, and high memory use.

The Excel file is divided into seven tabs that contain raw data (UV, CD, NMR, MS), general oligonucleotide information
(info), or peak labeling data (NMR and MS labels). It is essential to maintain consistency throughout the file to ensure
that the data and labels are read and associated correctly: oligonucleotide, electrolyte, cations, tunes and replicate
must be named identically across columns and tabs. If the data is to be appended to an existing database, the

13

naming scheme must be extended to the new data. In particular, attention should be paid about capitalization
(e.g. ‘TMAA’ vs ‘tmaa’ vs ‘Tmaa’) and typical name variants (e.g. ‘Kp’ vs. ‘Kpi’).

The template is installed with the package. Its location can be obtained by running:

system.file("extdata/demo_input.xlsx", package = 'g4dbr')

A�er adding data, do not save the file in this folder, as it would be overwritten by a package update, and deleted
upon package removal.

3.4.1.1 Info The first tab gathers essential data on the entries to submit (Figure S8). Five fields must be filled,
i.e.:

• oligo, the name of the oligonucleotide, preferably a PDB code where available,
• sequence, in the 5’ to 3’ direction, without spaces or dashes,
• submitted_by the initials or full name of the data submission author,
• DOI is the DOI of the paper linked to the PDB deposition. Paste the DOI only, and not a full link, which will be

automatically generated by importR
• Topology, a short user-supplied description of the oligonucleotide structure (e.g. parallel quadruplex).

Figure S8: Info template

All the other fields that can be seen in the corresponding tables in g4db are calculated automatically.

3.4.1.2 CD The CD data must be pasted in two columns, below the header, with the wavelength in the first
column and the ellipticity in mdeg in the second column (Figure S9).

The oligonucleotide, buffer and cation names, the cuvette path length in cm, and the oligonucleotide
concentration (in µM) must be supplied in the header rows.

For every new data set (new oligonucleotide/bu�er/cation combination), the next two columns must be used and
so forth. Even if the wavelength axis is the same, it must be specified again; this allows dealing with mismatched
axes (see the right-hand side columns in Figure S9).

Figure S9: CD template. Four spectra are shown. Note that one of the x-axis is mismatched

14

3.4.1.3 UV-melting The UV-melting tab is the only one where three columns must be filled for each oligonu-
cleotide/bu�er/cation combination:

• Temperature, is the solution temperature, in °C or K (importR determines which automatically),
• Absorbance, is the absorbance of the solution, with or without blank subtraction (blank subtraction can be

performed in importR)
• Blank, is the absorbance of the reference blank solution to subtract, where necessary.

Besides the oligonucleotide, buffer and cation names, the header contains a replicate field, to increment
when several experiments for the same oligonucleotide/bu�er/cation combination are submitted.

Figure S10: UV-melting template. Case where the data is already blank-subtracted

The melting data must be pasted as is, in particular if both cooling and heating ramps are recorded successively.
MeltR uses the changes in temperature (increase or decrease) from successive rows to assess whether it deals with
a heating or cooling ramps, and eventually dissociates both for further processing.

3.4.1.4 NMR The 1H-NMR template follows the same principle as the CD one: two columns (per oligonu-
cleotide/bu�er/cation combination) for the chemical shi� and intensity, and three header rows for the
oligonucleotide, buffer and cation names (Figure S11).

Figure S11: NMR template

3.4.1.5 NMR labels This tab is used to submit 1H NMR peak labelling information (Figure S12). The header
structure is the same than in the NMR data tab. The first column must be filled with peak numbers, in any order,

15

with the corresponding chemical shifts in the second column. The labels are handled as text, and therefore
several numbers can be submitted for a single chemical shi� value.

As a sidenote, it is possible to keep cells empty if a given peak number is in the list but there is no corresponding
peak in the spectrum. This is practical when several spectra are being labelled and a common peak number list is
used. Note that the peak list must be repeated for all spectra, even if they are identical.

Figure S12: NMR labels template. Note that both oligonucleotides have completely di�erent labellings

Make sure to mirror the header from the NMR data tab, so that all spectra are labelled.

3.4.1.6 MS The MS template shares the same structure as NMR and CD, withm/zand theintensityas columns
one and two (Figure S13). The intensity can be supplied normalized or not, it will eventually be normalized in
importR. Two additional header rows must be filled:

• tune, a short name identifying the MS parameters. The name must be linked to said parameters along the
database file (e.g. publication, readme file).

• replicate, a number to increment when several experiments for the same oligonucleotide/bu�er/cation/tune
combination are submitted.

Figure S13: MS template

16

It is advised to be relatively conservative with data-heavy spectra to cut on processing time in importR, e.g. irrel-
evant m/z ranges can be discarded. In case of doubt, everything can be kept at this stage and filtered later on in
importR.

3.4.1.7 MS labels This tab is aimed at providing the database with the nature of the species to label in the MS
spectrum, not their m/z. It therefore di�ers from the NMR label tab, where one must supply the chemical shift
of each label.

The first column contains the charge state numbers, to label di�erent charge states independently (Figure S14). The
second column contains the name of the species to be labelled, which must be supplied using the following syn-
tax: M for the non-adducted oligonucleotide, MK for a single-potassium-adduct species, MK2 for a two-potassium-
adduct species, and so forth (up to ten).

Figure S14: MS labels template. Note the di�erence in labelling between oligonucleotides and bu�er.

Make sure to mirror the header from the MS data tab, so that all spectra are labelled.

3.4.2 Populating a database

Once the template file is ready, the data can be loaded in g4db, processed, filtered, and written into a new or existing
database file. All of these steps can be performed in the importR tab, except for the UV-melting data treatment that
is carried out in meltR (see the Importing UV-melting data: the meltR tab section).

Essentially, importR works just like database. The main window hosts the same data tables and figures than
database (except UV-melting figures, which are in meltR, and the charge-focused MS plot), with the same function-
ing (data filtering, figure customization). In the same vein, the le� sidebar also contains the filters and color palette
selection menus. All these common features are described in the Interface overview and Consulting a database:
the database tab sections, and will not be discussed below.

The key aspect of importR is that it is a selective database writing tool. In that context:

• What you see is what you write to the database. Any data point filtered out (whether by oligonucleotide,
bu�er compositon, x-axis range), will not be written in the database file.

• Duplicated data points (same technique, oligonucleotide, bu�er composition, x-axis position,. . .) are dis-
carded. For instance, resubmitting data with a wider x-axis range will have the e�ect of completing the

17

database (without doubling the already existing points), but resubmitting corrected data on the same range
might not replace the initial data. It is therefore better to first remove the erroneous entry (see the Data
deletion section).

• Individual oligonucleotides and analytical methods can be included or excluded from the database writing.

3.4.2.1 Template file input The data is imported by selecting a file via the Browse. . . button in the le� sidebar.

3.4.2.2 Data filtering and processing Oligonucleotides are selected from the General information table. Fur-
ther bu�er composition filtering can be performed in the le� sidebar.

The CD and NMR calculations (e.g. normalization, labeling) and plotting are automatically performed, without any
user input. The MS data is processed and plotted when the plot MS button is clicked. Note that if the MS data is not
plotted, it cannot be exported to a database.

Method-dependent filtering is performed in the corresponding right sidebars, as described for the database tab.

3.4.2.3 Importing UV-melting data: themeltR tab The processing of UV-melting data is performed in meltR,
a distinct tab from importR, to avoid overcrowding the interface and allow its use outside of the database frame.

The data is sourced from the template file loaded in importR, and once the data is processed in meltR it can be sent
back to importR to include in the database. Note that the filtering of temperature range and bu�er composition
must be performed directly in meltR.

The use of meltR itself is described below.

3.4.3 Writing a database file

Once the data has been selected and properly filtered (including or not UV-melting data from meltR), it can be
written into a database file in three simple steps:

1. Select a database file, either an existing one (to add new entries) or an empty one (to create a new database).
This file can be opened in the Export section of the le� sidebar of importR, or from the database tab. In either
way, the data can be consulted in the database tab. An empty file is available in the package, and can be
found by running:

system.file("extdata/empty_database.Rda", package = 'g4dbr')

2. Select the methods to write to the database file, using the switches. The MS and UV-melting data must be
generated to be exported.

3. Click on Write to db file. By default, the file will be named following the Database-YYYY-MM-DD.Rda tem-
plate. Rename where necessary. If the database in use was generated the same day than the deletion oper-
ation, there is a risk of it being overwritten: make sure to name the new file with a di�erent name.

4. Optional: load the new/updated database to verify that the import worked correctly.

3.5 Automated processing of UV-melting data: themeltR tab

3.5.1 Principle

3.5.1.1 Purpose meltR is an automated UV-melting data processing so�ware. It determines the melting tem-
peratures (Tm), ∆G0, ∆H0 and ∆S0 by non linear fitting, and converts the absorbances into folded fractions.

18

Folded fractions are a good way to assess to which extent an oligonucleotide is structured (1: all molecules folded,
0: all molecules unfolded), visually observe the Tm (folded fraction = 0.5), and normalize the data of di�erent sam-
ples (and therefore di�erent absorbances) to a common y-scale.3

For the non-linear fitting and the folded fraction calculation to work, the data must contain both a lower and higher
baseline.3 In other words, the oligonucleotide must not be too stable or too unstable. In such cases, meltR allows
to normalize the data to [0;1] to at least bring all data to a common y-scale.

3.5.1.2 Data modeling: General model In a melting experiment, changes in the solution temperature lead to
changes in the amount of folded (decreases with increasing temperatures) and unfolded species (increases with
increasing temperatures). The model relies on the expression of the measured absorbance AT as the sum of the
absorbances from the folded (F) and unfolded (U) forms, weighted by their abundance expressed from the folded
fraction θT .

AT = AF
T × θT +AU

T × (1− θT)

Herein, the absorbances measured at 295 nm were converted to molar extinction coe�icient (in M-1cm-1) using
ε = A/lC, where l is a path length (in cm) andC the oligonucleotide concentration (in M).

εT = εF
T × θT + εU

T × (1− θT)

The folded fraction is defined by θ = [F]
[F]+[U] . Assuming a simple two-state model F ⇔ U with an equilibrium

constantK, θ can be expressed as:

θ = 1
1 +K

This leads to:

εT = εF
T ×

1
1 +K

+ εU
T ×

K

1 +K

εF
T and εU

T can be modeled as a linear function of the temperature, where a is the slope and b the intercept of these
baselines:

εT = (aFT + bF)× 1
1 +K

+ (aUT + bU)× K

1 +K

K can be expressed by thermodynamic quantities of interest: ∆G0, ∆H0 and ∆S0.

−RTlnK = ∆G0 = ∆H0 − T∆S0

Note that in meltR, potential changes in heat capacity changes in the evaluated temperature range are not taken
into account to avoid over-paramaterization. At the melting temperature:

∆G0
m = ∆H0

m − T∆S0
m = 0

Which leads to:

∆S0
m = ∆H0

m

Tm

19

And therefore:

∆G0 = ∆H0
m(1− T

Tm
)

Finally, K can be expressed as exp(−∆H0(1− T
Tm

)
RT), yielding:

AT = (aFT + bF)× 1

1 + exp(−∆H0(1− T
Tm

)
RT)

+ (aUT + bU)×
exp(−∆H0(1− T

Tm
)

RT)

1 + exp(−∆H0(1− T
Tm

)
RT)

3.5.1.3 Data modeling: Implementation and derived values In meltR, the absorbance is converted to molar
extinction coe�icients before fitting with the following model:

#code simplified for readibility
epsilon = (P3+P4*T)*1/(1+exp(-P1*(1-T/P2)/(8.31451*T))) +
(P5+P6*T)*exp(-P1*(1-T/P2)/(8.31451*T))/(1+exp(-P1*(1-T/P2)/(8.31451*T)))

where epsilon is the molar extinction coe�icient, T is the temperature (in Kelvin), P1 is ∆H0, P2 is the Tm, P3/P5
and P4/P6 are respectively the origins and slopes of the baselines. The optimized parameters are summarized in
the meltR tab, and can be later consulted in the database tab.

The non-linear fitting is performed with the base functionnls(). Below is a more detailed view of the fitting model,
applied on a demo data melting curve of 1XAV (Figure S15). Note that some user inputs have been hard-coded
herea�er:

#libraries
library(tidyverse)
library(ggthemes)

#Experimental conditions
melt.c <- 10 #oligo concentration (micromolars)
melt.l <- 1 #cuvette of 1.0-cm path length

#loading the demo data
load(system.file('extdata/demo_database.Rda', package = 'g4dbr'))

#Selection of a melting curve from the demo data
data.to.fit <- db.UV %>%
select(oligo, buffer, cation, rep, comment, ramp, id, T.K, abs.melt) %>%
filter(oligo == '1XAV' & buffer == '100 mM TMAA (pH 7.0)' & ramp == 'cooling')

#Plot
data.to.fit %>%
ggplot() +
geom_point(aes(x = T.K, y = abs.melt), color = 'steelblue') +
theme_pander() +
xlab("T (K)") +
ylab(expression(epsilon~(Mˆ-1*cmˆ-1)))

20

18000

20000

22000

275 300 325 350
T (K)

ε
(M

−1
cm

−1
)

Figure S15: Melting curve of 1XAV (cooling ramp) in 100 mM TMAA + 1 mM KCl, from the demo database

#Fit initialization (automated in the application)
P1s <- 130000
P2s <- 325 #automatically extracted from the first derivative in the application
P3s <- 1/(melt.c/1E6 * melt.l) #denominator converts initial parameters to molar abs coeff.
P4s <- 0.30/(melt.c/1E6 * melt.l)
P5s <- 0/(melt.c/1E6 * melt.l)
P6s <- -0.2/(melt.c/1E6 * melt.l)

#Non-linear fitting using the base nls() function
ms <- nls(
data=data.to.fit,
data.to.fit$abs.melt~(P3+P4*data.to.fit$T.K)*1 /
(1+exp(-P1*(1-data.to.fit$T.K/P2) / (8.31451*data.to.fit$T.K))) +
(P5+P6*data.to.fit$T.K)*exp(-P1*(1-data.to.fit$T.K/P2) / (8.31451*data.to.fit$T.K))

/ (1+exp(-P1*(1-data.to.fit$T.K/P2) / (8.31451*data.to.fit$T.K))),
start = list(P1 = P1s, P2 = P2s, P3=P3s, P4=P4s, P5=P5s, P6=P6s), #initial parameters
nls.control(maxiter = 5000, #default value, hard-coded here but users can modify it

warnOnly = T)
)

#Optimized parameters
fit.output <- data.frame(
nb.data.pt = nobs(ms),
RSS = sum(residuals(ms)ˆ2),
SE.residual = sigma(ms),
P1 = as.vector(coef(ms))[1],
P2 = as.vector(coef(ms))[2],
P3 = as.vector(coef(ms))[3],
P4 = as.vector(coef(ms))[4],
P5 = as.vector(coef(ms))[5],
P6 = as.vector(coef(ms))[6]

21

)

fit.output
#> nb.data.pt RSS SE.residual P1 P2 P3 P4 P5 P6
#> 1 387 2555867 81.90429 218057.5 325.7146 16737.21 21.67566 8193.128 28.99342

Note that the residual sum of squares (RSS) and standard error of residuals (RMSE) are computed.

A�er the fitting is complete, a number of derived values are calculated. The ∆Hř and ∆Sř of the folding reaction
are obtained from P1 and P2.

#Temperature at which the free energy is calculated
temp = 293 #User input in the app

DeltaH = -as.vector(coef(ms))[1]
DeltaS = -as.vector(coef(ms))[1]/as.vector(coef(ms))[2]
DeltaG = DeltaH - temp * DeltaS

data.frame(DeltaH, DeltaS, DeltaG)
#> DeltaH DeltaS DeltaG
#> 1 -218057.5 -669.474 -21901.57

The baselines (in M-1cm-1) are obtained with P3+P4*T and P5+P6*T (Figure S16):

data.to.fit %>%
mutate(low.T.baseline = fit.output$P3+fit.output$P4*T.K, #low temperature baseline

high.T.baseline = fit.output$P5+fit.output$P6*T.K) %>% #high temperature baseline
ggplot() +
geom_point(aes(x = T.K, y = abs.melt), color = 'steelblue') +
geom_line(aes(x = T.K, y = low.T.baseline), color = "coral", size = 1) +
geom_line(aes(x = T.K, y = high.T.baseline), color = "coral", size = 1) +
theme_pander() +
xlab("T (K)") +
ylab(expression(epsilon~(Mˆ-1*cmˆ-1)))

22

17500

20000

22500

25000

275 300 325 350
T (K)

ε
(M

−1
cm

−1
)

Figure S16: The baselines are not determined manually, but computed from the fitting parameters

The folded fraction (Figure S17) is calculated by deconvoluting the baseline contributions:

θ = P6T + P5− ε
P6T + P5− (P4T + P3)

data.to.fit %>%
mutate(folded.fraction.model = (fit.output$P5+fit.output$P6*T.K-abs.melt)/(fit.output$P5+fit.output$P6*T.K - fit.output$P3-fit.output$P4*T.K)) %>%
ggplot(aes(x = T.K, y = folded.fraction.model)) +
geom_point(color = "steelblue") +
theme_pander() +
xlab("T (K)") +
ylab(expression(epsilon~(Mˆ-1*cmˆ-1)))

23

0.00

0.25

0.50

0.75

1.00

275 300 325 350
T (K)

ε
(M

−1
cm

−1
)

Figure S17: The folded fraction of 1XAV (cooling ramp) in 100 mM TMAA + 1 mM KCl

The modeled folded fraction (Figure S18) is also derived from the fit, using:

θmodel = 1

1 + exp(−P 1(1− T
P 2)

RT)
.

data.to.fit %>%
mutate(folded.fraction =

(1/(1+exp(-fit.output$P1*(1-T.K/fit.output$P2)/(8.31451*T.K))))) %>%
ggplot(aes(x = T.K, y = folded.fraction)) +
geom_point(color = "steelblue") +
theme_pander() +
xlab("T (K)") +
ylab(expression(epsilon~(Mˆ-1*cmˆ-1)))

24

0.00

0.25

0.50

0.75

1.00

275 300 325 350
T (K)

ε
(M

−1
cm

−1
)

Figure S18: The modeled folded fraction of 1XAV (cooling ramp) in 100 mM TMAA + 1 mM KCl

3.5.1.4 Workflow The data is processed following this workflow:

1. Detection of the temperature unit, and conversion to Kelvin where necessary,
2. Generation of a unique id for each oligonucleotides, ramps, bu�ers, and replicates combinations. From then

on, all data is processed by id (in particular cooling and heating ramps are processed separately).
3. Blank subtraction, if blank data is submitted (can be turned o�),
4. Conversion of the absorbance data to molar extinction coe�icient,
5. Determination and separation of the ramps (cooling and heating). The ramps are always processed sepa-

rately.
6. Data selection from user input: oligonucleotides, ramps, bu�ers, replicates, or individual id.

The steps 7–9 are only carried out if the data can be fitted (presence of both lower and upper baselines):

7. Non linear fitting initialization

a. P2 (the Tm) is initialized as the maximum of the first derivative (∆ε
∆T)

b. All other parameters initial values are hard-coded, and modulated by the oligonucleotide concentration
and cell path length

c. User modifications, where necessary

8. Non linear fitting (see model above),
9. Calculation of the folded fractions (from experimental data and from the model) and baselines (see equations

above)

Step 10 is only carried out for non-fittable data:

10. The ε values are normalized in the [0;1] range, to be displayed alongside folded fraction data (same y-scale).

25

3.5.2 Data loading and filtering

The data must be loaded from the Excel template into importR. All of the UV-melting data is automatically imported
into meltR, regardless of the oligonucleotides selected in importR (to facilitate the standalone use). However, only
the processed data for the oligonucleotides selected in importR is sent back to that tab.

The meltR interface has a slightly di�erent organization than importR and database: the filtering of data to process
is carried out in the hovering Filter panel (Figure S19).

1. Where necessary, refine the temperature range (default: 276-363 K, or ~ 3-90 °C),
2. Select the oligonucleotides to process (default to all). It is possible to process several oligonucleotides at

once. Remember however that, in the context of g4db, these di�erent oligonucleotides need to be selected
in importR to be sent to that tab.

3. Select the ramps (heating or cooling) to process (default: both). The nature of the ramps is determined au-
tomatically, and the ramps are processed separately.

4. Select the bu�ers to process (default: all),
5. Select the replicates to process (default: all)
6. If the steps 2–5 do not allow to specifically select the desired data, it is possible to directly filter the data by

id.

Figure S19: The UV-melting data from the demo input, where the Kp+KCl bu�er was filtered o�

The Filter panel can be minimized by clicking on the header.

3.5.3 Data fitting

This section can be carried out only for data that can be fitted. For non-fittable data, skip this section.

1. Click on the Plot derivative button, located in the le� sidebar.

a. The Input data box will automatically switch to display ∆ε
∆T (Figure S20)

b. The Approximate Tm table is filled with the maxima from the derivatives, in the Fit box.

c. Artifactual points (e.g. caused by important local data variations) may lead to erroneous approximated
Tm: increase the smooth window and click on the button again. If the results are still not satisfactory,
continue anyway to step 2 (Figures S20 and S21).

26

Figure S20: First derivative data was obtained by clicking on Plot derivatives. Note the presence of artifacts at high
temperature that will cause an erroneous initialization to the Tm for 1XAV-TMAA + KCl-heating-1

Figure S21: Tm initialization from first derivative data. Here, the second entry is erroneous and must be corrected
either by increasing the derivative smoothing, or manually at the next step

2. Click on the Initialize fitting button, located in the le� sidebar (Figure S22).

a. The Fit box will automatically switch to the Fit initialization table.
b. If step 1. was not satisfactory, manually correct theTm.init variable. Correctly initialized Tm are critical

for the success of the fitting process. The other initial fitting parameter values can also be modified.
c. If desired, change the legend; by default it is the id

27

Figure S22: Fitting initialization. All parameters are initialized. Note that the Tm initialization is being manually
corrected

3. Click on the Launch fitting button, and the data will be processed and the result displayed in several figures
and tables (Figure S23).

a. The Fit box will automatically switch to the fit result tab, showing the fit lines and calculated baselines.
Baselines can be toggled o� using the corresponding switch in the le� sidebar.

b. The folded fractions (and modeled folded fraction) are shown in the Fit results box
c. The melting temperatures and other thermodynamic values are accessible in the Melting temperatures

box. The temperature at which the Free energy is calculated can be adjusted from a slider in the le�
sidebar. The Tm values are also plotted in the Plot tab (box plot grouped by oligonucleotide and bu�ers,
with distinctive colors per ramp).

d. If the fit fails, it is likely that the data was not correctly initialized. Change the parameters, and click
again on Launch fitting.

e. Where necessary, the maximum number of iterations can be increased (slider in the le� sidebar; default:
5000).

Figure S23: Fitting results: Fitted data (top right), folded fraction (bottom le�), data table and Tm plot (bottom
right)

28

3.5.4 Sending data to importR

To send data to importR for database edition:

1. If not already done, select the oligonucleotides to import in importR from the General information table of
that tab,

2. Select whether the data was fitted or not with the select data switch, in the le� sidebar,
3. Click on the send to importR button,
4. In importR, verify that the data has correctly been sent into the UV-melting data box.

3.5.5 Figure customization

The choice of colour palettes, lines and points size and transparency, can be made from the hovering Customisation
panel. The panel can be minimized by clicking on the header.

4 Other functions and reference files

4.1 epsilon.calculator

4.1.1 Principle

The oligonucleotide molar extinction coe�icients at 260 nm are calculated using the nearest-neighbor model in its
traditional format,1,2 where εi is the molar extinction coe�icient (in M-1cm-1) of the nucleotide in position i (in the
5’to 3’ direction), εi,i+1 is the extinction coe�icients for doublets of nucleotides in positions i and i + 1, andNb is
the number of nucleotides in the oligonucleotide.

ε260nm =
Nb−1∑
i=1

εi,i+1 −
Nb−1∑
i=2

εi

To that e�ect, it uses epsilondb, a database of reference ε260nm contributions from the individual nucleobases,
and couples of nucleobases (neighboring e�ects):

epsilondb
#> # A tibble: 4 x 6
#> base epsilon Acorr Ccorr Gcorr Tcorr
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 A 15400 27400 21200 25000 22800
#> 2 C 7400 21200 14600 18000 15200
#> 3 G 11500 25200 17600 21600 20000
#> 4 T 8700 23400 16200 19000 16800

epsilondb is contained within the[installpath]/data/Rdata.rdsfile a�er the package is built. The value may
be modified from the [installpath]/extdata/referencedb.xlsx but requires to rebuild the package.

4.1.2 Code

The code of epsilon.calculator is contained in R/EpsilonCalc.R

First, the list of nucleobases and their nearest 3’ neighbor are extracted from the user-supplied sequence (here
5’-GCAT-3’):

29

library(stringr)
library(tidyverse)

#sequence provided by the user
sequence <- 'GCAT'

#initialization of result data frame
epsilon.calc <- data.frame()
buffer <- data.frame()
result <- data.frame()

#extraction of individual bases and their 3' nearest neighbor
for (i in 1:str_length(sequence)) {
buffer <- data.frame(position = i,

nucleo = substr(sequence, i, i),
nn = substr(sequence, i+1, i+1)

)
epsilon.calc <- rbind(epsilon.calc, buffer)

}

epsilon.calc
#> position nucleo nn
#> 1 1 G C
#> 2 2 C A
#> 3 3 A T
#> 4 4 T

Their contribution are then attributed by matching their one letter code to the database, and both the 5’ and 3’
ends have their individual contributions set to zero.

#attribution of individual and nearest neighbor contributions
epsilon.calc <- epsilon.calc %>%
mutate(
indiv.base.cont = case_when(#individual
nucleo == 'G' ~ epsilondb$epsilon[epsilondb$base == 'G'],
nucleo == 'C' ~ epsilondb$epsilon[epsilondb$base == 'C'],
nucleo == 'T' ~ epsilondb$epsilon[epsilondb$base == 'T'],
nucleo == 'A' ~ epsilondb$epsilon[epsilondb$base == 'A']

),
nn.cont = case_when(#nearest neighbor
nucleo == 'G' ~ case_when(
nn == 'G' ~ epsilondb$Gcorr[epsilondb$base == 'G'],
nn == 'C' ~ epsilondb$Ccorr[epsilondb$base == 'G'],
nn == 'T' ~ epsilondb$Tcorr[epsilondb$base == 'G'],
nn == 'A' ~ epsilondb$Acorr[epsilondb$base == 'G']

),
nucleo == 'C' ~ case_when(
nn == 'G' ~ epsilondb$Gcorr[epsilondb$base == 'C'],
nn == 'C' ~ epsilondb$Ccorr[epsilondb$base == 'C'],
nn == 'T' ~ epsilondb$Tcorr[epsilondb$base == 'C'],
nn == 'A' ~ epsilondb$Acorr[epsilondb$base == 'C']

),
nucleo == 'T' ~ case_when(

30

nn == 'G' ~ epsilondb$Gcorr[epsilondb$base == 'T'],
nn == 'C' ~ epsilondb$Ccorr[epsilondb$base == 'T'],
nn == 'T' ~ epsilondb$Tcorr[epsilondb$base == 'T'],
nn == 'A' ~ epsilondb$Acorr[epsilondb$base == 'T']

),
nucleo == 'A' ~ case_when(
nn == 'G' ~ epsilondb$Gcorr[epsilondb$base == 'A'],
nn == 'C' ~ epsilondb$Ccorr[epsilondb$base == 'A'],
nn == 'T' ~ epsilondb$Tcorr[epsilondb$base == 'A'],
nn == 'A' ~ epsilondb$Acorr[epsilondb$base == 'A']

)
)

)

#attributes 0 to the first nucleobase individual contribution
epsilon.calc$indiv.base.cont[1] = 0
#attributes 0 to the last nucleobase individual contribution
epsilon.calc$indiv.base.cont[str_length(sequence)] = 0

epsilon.calc
#> position nucleo nn indiv.base.cont nn.cont
#> 1 1 G C 0 17600
#> 2 2 C A 7400 21200
#> 3 3 A T 15400 22800
#> 4 4 T 0 NA

Finally, the sum of individual contributions are subtracted from the nearest neighbor contributions:

#sum of indiv cont subtracted from sum of nn cont.
result <- sum(epsilon.calc$nn.cont, na.rm = T) - sum(epsilon.calc$indiv.base.cont, na.rm = T)
result
#> [1] 38800

4.1.3 Use

epsilon.calculator computes the molar extinction coe�icient at 260 nm of oligonucleotides from their
sequences. So far, it only works for DNA oligonucleotides, using the four canonical nucleotides.

Below is an example for a single sequence:

epsilon.calculator("GGGTTAGGGTTAGGGTTAGGG")
#> [1] 215000

The sequence must be provided as a string, and must be written with upper case letters (to allow the implementa-
tion of RNA calculation in the future):

epsilon.calculator("gggttagggttagggttaggg")
#> [1] 0

epsilon.calculator can be applied on a list of sequence (here, oligo.list) using the base function lapply:

31

oligo.list <- c('oligo name 1' = 'GGGTTAGGGTTAGGGTTAGGG', 'oligo name 2' = 'TGGGGT',
'oligo name 3' = 'GCAT', 'oligo name 4' = 'TACG')

epsilon.list <- lapply(oligo.list, epsilon.calculator)

epsilon.list
#> $`oligo name 1`
#> [1] 215000
#>
#> $`oligo name 2`
#> [1] 57800
#>
#> $`oligo name 3`
#> [1] 38800
#>
#> $`oligo name 4`
#> [1] 39800

or on a data frame (here, df) to directly associate the results to other variables, as is performed within g4db.

df <- data.frame(
oligo = c('name 1', 'name 2', 'name 3', 'name 4'),
something = c('a', 'b', 'c', 'd'),
sequence = c('GGGTTAGGGTTAGGGTTAGGG', 'TGGGGT', 'GCAT', 'TACG')

)

df$epsilon <- lapply(df$sequence, epsilon.calculator)

df
#> oligo something sequence epsilon
#> 1 name 1 a GGGTTAGGGTTAGGGTTAGGG 215000
#> 2 name 2 b TGGGGT 57800
#> 3 name 3 c GCAT 38800
#> 4 name 4 d TACG 39800

4.2 mass.diet

4.2.1 Principle

The importR tab includes an optional mass spectrometric data reduction step, performed by the mass.diet func-
tion. It applies two di�erent filters:

• An m/z filter, which exclude all data points above or below a user-supplied m/z range,
• An intensity filter, which excludes data points whose intensity is below a threshold. This intensity threshold

is calculated as the mean intensity of a user-supplied m/z baseline range of length n, multiplied by a user-
supplied coe�icient.

threshold =
∑baselineend

baselinestart
intensity

n
× coefficient

When submitting several spectra, the intensity thresholds are computed for each individual spectrum to avoid
issues with di�erent signal-to-noise ratios.

32

4.2.2 Code

The code of mass.diet is contained in R/massdiet.R.
mass.diet requires that the data is formatted as a dataframe with the following columns:

• mz, the m/z axis,
• int, the intensity,
• oligo, the oligonucleotide names,
• buffer.id, the bu�er name,
• tune, the MS tune name,
• rep, the replicate number

The last four columns are used as grouping variables to calculate individual intensity thresholds.
The data is processed in three simple steps. First the m/z range filter is applied, then the intensity threshold is
calculated for each spectrum from the average noise in the defined baseline, and finally the intensity thresholds
are applied to their respective spectrum. If the user lets the coe�icient to its default value, i.e. 0, no intensity filtering
will happen.

mass.diet <- function(fat.mass, base.start, base.end, range.start, range.end, baseline.int){

library(tidyverse)

#m/z range filtering----
losing.mass <- fat.mass %>%
filter(mz > min(range.start)) %>%
filter(mz < max(range.end))

#intensity filtering----
#intensity threshold determination
if (baseline.int > 0) { #filters by intensity if the coefficient is not 0
baseline.filter <- losing.mass %>%
group_by(oligo, buffer.id, tune, rep) %>% #grouping by individual spectra
filter(mz < base.end) %>% #selection of baseline range
filter(mz > base.start) %>%
#intensity threshold (mean noise times the multiplier)
summarise(basemean = mean(int)*baseline.int)

#removal of noise
fit.mass <- losing.mass %>% #joins threshold to m/z filtered data
left_join(baseline.filter, by = c("oligo", "buffer.id", "tune", 'rep')) %>%
group_by(oligo, buffer.id, tune, rep) %>% #group by spectrum
filter(int > basemean) %>% #filters
select(-c(basemean)) #removes threshold column

} else {
#does nothing if coefficient at 0
fit.mass <- losing.mass

}
return(fit.mass)

}

4.2.3 Use

mass.diet can be used outside of g4db, provided the input data contains the above-mentioned columns.

33

Here, we will use the data from the demo input file. In g4db it is loaded as follows:

library(readxl)
library(hablar)

wide.input <- read_excel(system.file("extdata/demo_input.xlsx", package = 'g4dbr'),
sheet = "MS")

#extract descriptors
descriptors <- wide.input %>%
slice(1:6)

#extract data
wide.input <- wide.input %>%
slice(-1:-6)

data.collector <- data.frame()

for (i in 1:ncol(wide.input)-1) {
if (i %% 2 != 0) { #runs on uneven columns only
buffer <- wide.input %>%
select(i, i+1) %>% #select every couple columns
mutate(descriptors[[1, i+1]], #adds columns for descriptors

descriptors[[2, i+1]],
descriptors[[3, i+1]],
descriptors[[4, i+1]],
descriptors[[5, i+1]]) %>%

magrittr::set_colnames(
c('mz', 'int', 'oligo', 'buffer', 'cation', 'tune', 'rep')
) %>%

mutate(buffer.id = ifelse(is.na(cation), buffer, paste(buffer, '+', cation))) %>%
convert(num('mz', 'int')) #converts some columns to numeric type

#binds data
data.collector <- rbind(data.collector, buffer,

make.row.names = F)
}

}

wide.input <- data.frame() #empty for memory
buffer <- data.frame() #same

data.collector
#> # A tibble: 1,268,904 x 8
#> mz int oligo buffer cation tune rep buffer.id
#> <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 300. 0 1XAV TMAA <NA> tune1 1 TMAA
#> 2 300. 1 1XAV TMAA <NA> tune1 1 TMAA
#> 3 300. 5 1XAV TMAA <NA> tune1 1 TMAA
#> 4 300. 0 1XAV TMAA <NA> tune1 1 TMAA
#> 5 300. 10 1XAV TMAA <NA> tune1 1 TMAA
#> 6 300. 38 1XAV TMAA <NA> tune1 1 TMAA
#> 7 300. 72 1XAV TMAA <NA> tune1 1 TMAA
#> 8 300. 72 1XAV TMAA <NA> tune1 1 TMAA
#> 9 300. 53 1XAV TMAA <NA> tune1 1 TMAA

34

#> 10 300. 33 1XAV TMAA <NA> tune1 1 TMAA
#> # ... with 1,268,894 more rows

mass.diet is applied as shown below, by specifying the m/z range withrange.startandrange.end, the baseline
for noise with base.start and base.end, and the coe�icient with baseline.int.

reduced.data <- mass.diet(fat.mass = data.collector, base.start = 1250, base.end = 1350,
range.start = 1000, range.end = 2000, baseline.int = 2)

reduced.data
#> # A tibble: 98,998 x 8
#> # Groups: oligo, buffer.id, tune, rep [4]
#> mz int oligo buffer cation tune rep buffer.id
#> <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 1000. 326 1XAV TMAA <NA> tune1 1 TMAA
#> 2 1000. 374 1XAV TMAA <NA> tune1 1 TMAA
#> 3 1000. 378 1XAV TMAA <NA> tune1 1 TMAA
#> 4 1000. 358 1XAV TMAA <NA> tune1 1 TMAA
#> 5 1000. 432 1XAV TMAA <NA> tune1 1 TMAA
#> 6 1000. 692 1XAV TMAA <NA> tune1 1 TMAA
#> 7 1000. 1057 1XAV TMAA <NA> tune1 1 TMAA
#> 8 1000. 1426 1XAV TMAA <NA> tune1 1 TMAA
#> 9 1000. 1751 1XAV TMAA <NA> tune1 1 TMAA
#> 10 1000. 1817 1XAV TMAA <NA> tune1 1 TMAA
#> # ... with 98,988 more rows

Here, the 1250-1350 m/z region was picked for the baseline with a coe�icient of 2, and the m/z was restricted to 1000-
2000. This reduced the number of data points to 7% of its original value (from 1,268,904 to 98,998). That being said,
mass.diet should be used conservatively and the size-reduced data must be inspected visually for excess removal.

Below are the four mass spectra from the demo file a�er running mass.diet.

library(ggthemes)

reduced.data %>%
#normalization
group_by(oligo, buffer.id) %>%
mutate(int.min = min(int), int.max = max(int)) %>%
mutate(norm.int = (int - int.min)/(int.max - int.min)) %>%
#plot
ggplot(aes(x = mz, y = norm.int, color = paste(oligo, buffer.id))) +
geom_line() +
xlab("m/z") +
ylab("intensity") +
facet_grid(buffer.id~oligo) +
theme_pander() +
theme(legend.position = 'none')

35

1XAV 2LOD
T

M
A

A
T

M
A

A
 +

 K
C

l

1000 1250 1500 1750 2000 1000 1250 1500 1750 2000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

m/z

in
te

ns
ity

Figure S24: Normalized native MS spectra from the demo input file data reduced to a fraction of its original size
using ‘mass.diet‘

4.3 database.eraser

4.3.1 Principle

The database.eraser function reads a user-specified database, remove the data for the indicated oligonu-
cleotides and analytical methods, and returns a list of dataframe (one dataframe per method). Specifically, the
erase.db function, which filters o� the data of the indicated oligos, is applied method per method, and only on
those specified by logical values erase.CD, erase.MS, erase.NMR and erase.UV. This way, it maintains the data
frames structures even if all data is removed, which allows to reuse the file in g4db.

4.3.2 Code

database.eraser <- function(db.to.erase = NULL, remove.oligos = NULL,
erase.CD, erase.NMR, erase.MS, erase.UV){

#operator definition
'%notin%' <- Negate('%in%')

#data to remove
remove.oligos <- remove.oligos

#if all exp data is removed, remove the oligo info as well
if (erase.CD == TRUE & erase.NMR == TRUE & erase.MS == TRUE & erase.UV == TRUE) {
erase.info <- TRUE

36

} else {
erase.info <- FALSE

}

#file loading
load(file = db.to.erase)

#erasing function
erase.db <- function(dataset = NULL, remove.oligos){

dataset <- dataset %>%
filter(oligo %notin% remove.oligos)

return(dataset)
}

#Data removal (per method, if selected for removal)
if (erase.CD == TRUE) {
db.CD <- as.data.frame(erase.db(dataset = db.CD, remove.oligos))

}

if (erase.info == TRUE) {
db.info <- as.data.frame(erase.db(db.info, remove.oligos))

}

if (erase.MS == TRUE) {
db.MS <- as.data.frame(erase.db(db.MS, remove.oligos))

}

if (erase.UV == TRUE) {
db.UV <- as.data.frame(erase.db(db.UV, remove.oligos))

}

if (erase.NMR == TRUE) {
db.NMR <- as.data.frame(erase.db(db.NMR, remove.oligos))

}

#Rest of data collected back in a list
db.collection <- list('db.info' = db.info,

'db.CD' = db.CD,
'db.NMR' = db.NMR,
'db.MS' = db.MS,
'db.UV' = db.UV)

return(db.collection)

}

4.3.3 Use

Below is an example for the demo database, for which the MS and NMR data will be removed for both entries.

37

modified.db <- database.eraser(db.to.erase = system.file('extdata/demo_database.Rda', package = 'g4dbr'),
remove.oligos = c('1XAV', '2LOD'),
erase.CD = FALSE, erase.NMR = TRUE, erase.MS = TRUE, erase.UV = FALSE)

Both entries are still present in the database:

head(modified.db[["db.info"]])
#> oligo DOI submitted_by depo.date sequence nbN averagemw monomw ext.coeff.260 Topology nbA nbC nbG nbT nP nC nH nO nN
#> 1 1XAV 10.1021/bi048242p AG 2020-06-26 TGAGGGTGGGTAGGGTGGGTAA 22 6991.511 6988.188 228700 Parallel 4 0 13 5 21 220 270 131 95
#> 2 2LOD 10.1093/nar/gks329 AG 2020-06-26 GGGATGGGACACAGGGGACGGG 22 6955.491 6952.200 226400 Hybrid 5 3 13 1 21 217 266 126 101

And the UV and CD data are still present:

db.CD <- modified.db[["db.CD"]]
db.UV <- modified.db[["db.UV"]]
head(db.UV)
#> T.unk abs.raw abs.blk oligo buffer cation rep melt.l melt.c comment ramp id T.K blk.sub abs.melt nb.data.pt init.Tm RSS SE.residual P1 P1SD P2 P2SD P3 P3SD P4 P4SD P5 P5SD P6 P6SD fit.Tm.K fit.Tm.C DeltaH DeltaS folded.fraction folded.fraction.base raw.fit.y low.T.baseline high.T.baseline
#> 1 4.2 0.2711 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 277.35 1 27110 NA 0.2727273 NA NA NA
#> 2 4.4 0.2711 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 277.55 1 27110 NA 0.2727273 NA NA NA
#> 3 4.6 0.2715 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 277.75 1 27150 NA 0.2840909 NA NA NA
#> 4 4.8 0.2717 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 277.95 1 27170 NA 0.2897727 NA NA NA
#> 5 5.0 0.2718 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 278.15 1 27180 NA 0.2926136 NA NA NA
#> 6 5.3 0.2717 0 1XAV 25 mM Kp (pH 7.0) 70 mM KCl 1 1 10 25 mM Kp (pH 7.0) + 70 mM KCl heating 1XAV-25 mM Kp (pH 7.0) + 70 mM KCl-heating-1 278.45 1 27170 NA 0.2897727 NA NA NA
head(db.CD)
#> wl CD oligo buffer cation l con buffer.id delta.epsilon plot.y
#> 1 329.8 0.0274670185 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) 0.208209661 0.208209661
#> 2 329.6 0.0096042216 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) 0.072803378 0.072803378
#> 3 329.4 -0.0002250792 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.001706179 -0.001706179
#> 4 329.2 -0.0025197889 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.019100886 -0.019100886
#> 5 329.0 -0.0108839050 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.082503828 -0.082503828
#> 6 328.8 -0.0103693931 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.078603647 -0.078603647

But the MS and NMR data have been removed for both oligonucleotides. Note that the dataframe structure is con-
served:

db.NMR <- modified.db[["db.NMR"]]
db.MS <- modified.db[["db.MS"]]
head(db.MS)
#> mz int oligo buffer cation tune rep buffer.id int.min int.max norm.int rmz charge species
#> 1 1250.003 103 oligo 100 mM TMAA (pH 7.0) 1 mM KCl tune99 99 100 mM TMAA (pH 7.0) + 1 mM KCl 0 0 0 0 0 A
head(db.CD)
#> wl CD oligo buffer cation l con buffer.id delta.epsilon plot.y
#> 1 329.8 0.0274670185 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) 0.208209661 0.208209661
#> 2 329.6 0.0096042216 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) 0.072803378 0.072803378
#> 3 329.4 -0.0002250792 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.001706179 -0.001706179
#> 4 329.2 -0.0025197889 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.019100886 -0.019100886
#> 5 329.0 -0.0108839050 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.082503828 -0.082503828
#> 6 328.8 -0.0103693931 1XAV 100 mM TMAA (pH 7.0) none 0.4 10 100 mM TMAA (pH 7.0) -0.078603647 -0.078603647

To save the modified database, use the save function:

38

db.info <- modified.db[["db.info"]]

save(db.info,
db.CD,
db.NMR,
db.MS,
db.UV,
file = 'filepath/filename.rda')

References

(1) Tataurov, A. V.; You, Y.; Owczarzy, R. Predicting ultraviolet spectrum of single stranded and double stranded de-
oxyribonucleic acids. Biophysical Chemistry 2008, 133 (1-3), 66–70. https://doi.org/10.1016/j.bpc.2007.12.004.

(2) Cantor, C. R.; Warshaw, M. M.; Shapiro, H. Oligonucleotide interactions. III. Circular dichroism studies of the
conformation of deoxyoligonucleolides. Biopolymers 1970, 9 (9), 1059–1077. https://doi.org/10.1002/bip.1970.
360090909.

(3) Mergny, J.-L.; Lacroix, L. Analysis of Thermal Melting Curves. Oligonucleotides 2003, 13 (6), 515–537. https://doi.
org/10.1089/154545703322860825.

39

https://doi.org/10.1016/j.bpc.2007.12.004
https://doi.org/10.1002/bip.1970.360090909
https://doi.org/10.1002/bip.1970.360090909
https://doi.org/10.1089/154545703322860825
https://doi.org/10.1089/154545703322860825

	General overview
	Intended and less-intended uses
	Extended scope
	Main features
	Workflow

	Installation and setup
	Installation
	Setup

	g4db
	Running the app
	Interface overview
	Consulting a database: the database tab
	Importing data in the database: the importR tab
	Automated processing of UV-melting data: the meltR tab

	Other functions and reference files
	epsilon.calculator
	mass.diet
	database.eraser

	References

